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ABSTRACT

Many rendering algorithms can be understood as numerical solvers for the light-transport equation. Local illumination is
probably the most widely implemented rendering algorithm: it is simple, fast, and encoded in 3D graphics hardware. It is
not, however, derived as a solution to the light-transport equation.

We show that the light-transport equation can be re-interpreted to produce local illumination by using vector-valued
light and matrix-valued reflectance. This result fills an important gap in the theory of rendering. Using this framework,
local and global illumination result from merely changing the values of parameters in the governing equation, permitting
the equation and its algorithmic implementation to remain fixed.
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1. INTRODUCTION

(a) global reflectance (b) shadowless reflectance (c) one-bounce reflectance (d) local reflectance

Figure 1. Figure 1: Globally illuminated scene exhibiting four different reflectance functions.

In the historical development of computer graphics, “local illumination” was the first and simplest illumination tech-
nique to produce three-dimensional shading in an image. The heart of the algorithm evaluates the exitant radiance
Lout(x,ωout) in the direction ωout from a point x on a surface according to the equation

Lout(x,ωout) = ∑
i

f (x,ωi,ωout) L̂in(x,ωi) cosθ (1)

where the reflectance function f determines the appearance of the surface, the angle ωi is measured from the point light at
position pi to the point x, and the angle θ is measured between the surface normal at x and the direction to pi. The incident
radiance in the direction ωi from pi to x is approximated by

L̂(x,ωi) =
I(pi)

r2 (2)
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Figure 2. Incident radiance Lin strikes a point x on the surface and reflects with radiance L out in directions ωout

where I(pi) is the intensity at each point light pi, and the distance r = |pi −x| is measured from the point pi to x. Over the
years, more sophisticated algorithms have been developed to produce increasingly realistic images (incorporating shadows
and inter-reflections) by approximating the equation

Lout(x,ωout) = E(x,ωout)+
∫

ωin∈S2

f (x,ωin,ωout)Lin(x,ωin) cosθ dωin (3)

for light transport,1 where integration is over the sphere S
2, Lin is the incident radiance, and the emitted radiance E

is nonzero for luminaires. See Figure 2. In many domains of computational science, physical phenomena that obey
governing equations are solved by numerical algorithms. The notion that rendering algorithms belong to the landscape
of computational science has been articulated by several authors: the survey article by Christensen2 describes how the
task of rendering can be understood as the implementation of a numerical solver for Equation 3, either by gathering light
into the camera (e.g. ray tracing, path tracing, and matrix-solver radiosity) or by shooting light from the luminaires (e.g.
progressive radiosity and photon tracing). Kajiya’s formulation of light transport3 includes a “geometry term” g(x1,x2)
between points x1 and x2 that could be set to unity when x2 lies on a luminaire, thus eliminating shadows. Can a term in
equation 3 be likewise coerced into producing local illumination?

Although the two are rather similar, Equation 1 differs significantly from Equation 3 because the incident radiance
Lin arriving at the point x generally differs from the approximation L̂in due to scattering that may occur along the path
P from pi to x. Equation 1 is not intended to be a physically plausible description of light transport, but it leads to a
fast implementation because integration along the path P can be neglected. Local illumination can therefore be viewed
as a correct algorithm to evaluate the wrong equation, or as an incorrect algorithm to evaluate the right equation. But is
it possible to interpret Equation 3 so that local illumination is actually the correct solution? If so, this would allow us
to formulate a theory of rendering that incorporates the widely used (and widely taught) algorithm for local illumination
as a correct numerical solver for a special case of the integral equation for light transport, as opposed to being a stand-
alone algorithm that is merely suggestive of correct results. Under such a theory, the question “what lies between local
illumination and global illumination?” would be meaningful because interpolating between parameters in an equation is
well understood, whereas interpolating between algorithms is not.

2. VECTOR-VALUED LIGHT

The paper “Removing shadows from images”4 shows how shadows in an image can be removed as a post-process; by
contrast, we offer an interpretation of Equation 3 in which shadows are not even cast. We accomplish this via a bit of
subterfuge inspired by locally-illuminated scenes rendered with OpenGL in which the point light sources are invisible to
the camera and therefore do not appear in the image.

The problem with using a physically faithful renderer to generate a locally-illuminated shadowless image is that a phys-
ical object must be transparent in order to permit light to pass through it. Such a purely transparent surface is characterized
by the reflectance function

ftransp(x,ωin,ωout) =
1

cosθ
δ (ωout −ωin) (4)

(where δ is the Dirac delta distribution) which can be substituted into Equation 3 to produce the identity

Lout(x,ω) = Lin(x,ω) (5)



Figure 3. Incident invisible radiance Lin strikes a point x on a sphere (cut-away view). The surface transmits invisible light while
reflecting visible light.

for transparency.5 A perfectly transparent object casts no shadow, but it also reflects no light to the camera. So applying the
reflectance ftransp does not quite produce local illumination, because it makes objects transparent both to the luminaires and
to the camera. If, however, a transparent object could somehow generate “reflected” light while allowing the incident light
to pass through transparently, then the object would be visible to the camera even while casting no shadow. In general, the
“reflected” light obeys the same reflectance function (which we denote fopaque) as the corresponding locally-illuminated
surface; in particular, fdiffuse mimics an ordinary diffuse reflector by satisfying

fdiffuse(x,ωin,ωout) =

{

kd if cosθ > 0
0 otherwise

(6)

where kd is the diffuse coefficient. The drawback with combining ftransp with fopaque is that the total amount of light
increases with every scattering event, so the resulting image is unrealistically bright, especially where two surfaces inter-
reflect.

Our solution is to treat light as a vector-valued quantity L having both an invisible and a visible component.

L =

[

Linvisible
Lvisible

]

(7)

Every pixel p[x,y] in the image stores the vector-valued quantity L whose coordinates are the invisible and visible compo-
nents of the light. The final displayed image shows only the second (visible) coordinate of the light at each pixel, namely
the (inner) product

[0 1] L (8)

of the vector [0 1] with L. Thus, light from the luminaires ultimately contributes to the light seen by the camera, but that
contribution is made indirectly. The reflectance functions of the surfaces can be deliberately designed to produce local
illumination while leaving the governing equation intact.

2.1. Local Illumination

We establish initial conditions for light transport by assigning vector-valued emittance

E =

[

Einvisible
Evisible

]

(9)

to the luminaires. For OpenGL-style rendering where the light source is not visible in the image, we require

Evisible = 0 (10)

so that the luminaire emits purely invisible light. To make the luminaire visible in the image, we simply require that

Einvisible = Evisible (11)



so that the luminaire emits light into the scene and into the camera. The invisible light is transmitted perfectly through any
object in its path (casting no shadow), but is reflected as visible light which is then seen by the camera. The visible light is
absorbed by each surface in the scene. This behavior is summarized in the scattering diagrams below, with invisible light
striking a point x and being transmitted and reflected, and with visible light being absorbed.

Linvisible → x
↗ Linvisible (transmitted)

↘ Lvisible (reflected)
(12)

Lvisible → x (absorbed) (13)

The 2×2 matrix Flocal given by

Flocal =

[

ftransp 0
fopaque 0

]

(14)

organizes the transparent and reflective components describing the interaction between this invisible light and a surface so
that the product

Flocal L =

[

ftransp Linvisible
fopaque Linvisible

]

(15)

produces perfect transmission in the invisible component and opaque reflection in the visible component of the vector.

This matrix-valued interpretation of Flocal may be inserted in the vector-valued equation for light transport

Lout = E +
∫

ωin∈S2

Flocal Lin cosθ dωin (16)

with emissive components E = 0 on surfaces of non-emissive objects and E 6= 0 on luminaires. The resulting image using
Flocal as the reflectance function is shown in Figure 1 (d). Note that the luminaire in this scene emits light that includes a
nonzero visible component, otherwise it would not show up in the image.

Our proposed formulation of vector-valued light transport with matrix-valued reflectance has obvious similarity to fluo-
rescent effects using spectral rendering6789 in which a vector representation of light at different wavelengths (in particular,
ultraviolet and visible) interacts with a surface via a reflectance matrix that converts incident light at one wavelength into
reflected light re-radiated at another wavelength. In our model, the “wavelength” (or better, the pseudo-wavelength) λ
is merely an abstract contrivance for interpreting the invisible light. The wavelength dependence can be stated explicitly
using a reflectance matrix Fλ and spectral radiance Lλ as shown below

Fλ Lλ =
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(17)

where Fλ is a block-diagonal matrix whose 2×2 blocks are given by Equation 14 and L̂λ denotes the invisible version of
radiance Lλ having basis wavelength λ (whether red, green, or blue). The following sections present only the 2×2 blocks,
as in Equation 14, from which the coresponding full-spectral reflectance matrix Fλ , as in Equation 17, can immediately be
derived.

2.2. Global Illumination

To produce conventional global illumination for a scene lit by vector-valued light, the surfaces should reflect the “invisible”
light in both the invisible and visible channels (in order to propagate into the scene while being visible to the camera), permit
no forward scattering of light (otherwise objects become transparent), and absorb the visible light. The scattering diagram
below illustrates this behavior.

Linvisible → x
↗ Linvisible (reflected)

↘ Lvisible (reflected)
(18)



(a) lighting with OpenGL (b) triangle mesh (detail) (c) OpenGL (detail) (d) path tracer (detail)
Figure 4. Comparison between local illumination (using OpenGL) and global illumination with the local diffuse reflectance function F local.

The 2×2 matrix Fglobal given by

Fglobal =

[

fopaque 0
fopaque 0

]

(19)

describes the interaction between this invisible light and a surface so that the product of Fglobal and the vector-valued light
L properly reflects invisible light to the camera and into the scene. Figure 1 (a) shows the resulting globally illuminated
image.

2.3. Hybrid Illumination

With a vector-valued interpretation of radiance L and a matrix-valued interpretation F of the reflectance function, hybrid
illumination effects can be produced. For example, the multiple bounces of light in global illumination are free to proceed
even when no shadows are cast; that is, shadows and inter-reflection may be de-coupled as shown in the scattering diagram
below that models shadowless inter-reflecting surfaces.

Linvisible → x
↗ Linvisible (reflected + transmitted)

↘ Lvisible (reflected)
(20)

With this form of scattering, a surface casts no shadow because the invisible light is transmitted through it. This behavior
is represented by the scattering function Fshadowless

Fshadowless =

[

fopaque + ftransp 0
fopaque 0

]

(21)

which produces the shadowless image in Figure 1 (b).

Producing shadows without inter-reflection is accomplished by absorbing the invisible light while reflecting it into the
visible channel; the visible light is absorbed by each surface in the scene and is merely available for the camera to collect.
This behavior is illustrated in the scattering diagram below

Linvisible → x → Lvisible (reflected) (22)

and is represented by the scattering function FoneBounce

FoneBounce =

[

0 0
fopaque 0

]

(23)

which produces the “one-bounce” image in Figure 1 (c).



3. COMPARISON TO OPENGL

We compared the result of global illumination using a diffuse Flocal (rendered with a Monte Carlo path tracer for vector-
valued light using Russian roulette for path termination) versus local illumination using pure diffuse reflectors (rendered
with OpenGL as the reference algorithm) by creating a test scene containing two spheres lit from above. Precise head-to-
head comparison is complicated by the fact that a point light source is almost never sampled by the path tracer, but is the
only local source of light available within OpenGL. To roughly match the geometry of the luminaire in OpenGL and in the
path tracer, we modeled the rectangular light source as a set of five point lights (placed in the center tile and the four corner
tiles of a 3×3 checkerboard tiling of the luminaire) in the OpenGL scene while treating it as an area for the path tracer to
sample.

OpenGL uses the Warn model for a point light having intensity I at position p and shining in direction v. At position x,

I(x) =
(u ·v)e

a0 +a1r +a2r2 I(p) (24)

where r is the distance from p to x, softening parameters a0, a1, and a2 govern the quadratic intensity falloff, u is the unit
vector from p to x, and e is an exponent controlling the angular distribution of the intensity. In order to match the emittance
of the luminaires using OpenGL and using a path tracer, we set the parameters a0 = a1 = 0 (coefficient a2 = 0.0025 serves
as a scale parameter characterizing the spatial dimensions of the scene) and e = 1. The result is that OpenGL approximately
matches the behavior of an area light source that emits with a cosine distribution.

Figure 4 shows a side-by-side comparison between a scene containing roughly 500,000 triangles illuminated by
OpenGL and by our path tracer using Flocal. In the path-traced image the luminaire emits purely invisible light; it it not seen
by the camera, but its reflection off of surfaces in the scene forms the image. We applied multi-pass rendering (generating
64 samples per pixel) to de-alias the OpenGL image. The path tracer generated 80,000 samples per pixel. The difference
in the images is largely due to the variance in the path tracer’s evaluation of exitant radiance; in 4(d) a magnified view of

the foreground sphere reveals this speckling. The per-pixel error epixel can be measured as
√

1
3 ((∆r)2 +(∆g)2 +(∆b)2)

where ∆r, for example, is the difference between the red components; thus epixel = 1 is the error between black (0,0,0)

and white (1,1,1). The two images use the entire brightness range from black to white. No tone-mapping was applied.
The mean per-pixel error between images 4(a) and 4(b) is 0.4%, or 1 part in 255. Our theoretical model introduces little
if any bias compared to OpenGL: the difference between the average color of each image is less than 1 part in 255. The
small error supports the claim that the vector-valued interpretation of light transport in Equation 16 is an effective model
for local illumination because it accurately reproduces an image rendered by OpenGL.

4. CONCLUSION

During the history of computer graphics, local illumination developed as an ad-hoc technique that was later improved
by deliberate derivation from the equation for light transport. Local illumination is still widely taught and widely used
in graphics hardware; a theory of rendering should be able to explain it in terms of light transport. We have shown
that a vector-valued interpretation of light transport supports such a theory of rendering. In particular, the matrix-valued
reflectance function F can produce (1) local illumination, (2) global illumination, (3) shadows without inter-reflection, and
(4) inter-reflection without shadows, all within a single algorithm. The corresponding values of F are summarized below.

Flocal =

[

ftransp 0
fopaque 0

]

Fglobal =

[

fopaque 0
fopaque 0

]

Fshadowless =

[

fopaque + ftransp 0
fopaque 0

]

FoneBounce =

[

0 0
fopaque 0

]



We implemented a path tracer (gathering light into the camera) that uses vector-valued light in order to demonstrate the
effects that these reflectances produce. In particular, Flocal yields an image that differs from an OpenGL rendering by only
1 part in 255 (1 bit per byte) on average, supporting the claim that light transport with Flocal is an effective model for local
illumination. We plan next to demonstrate vector-valued light transport within a light-shooting algorithm.

The authors gratefully acknowledge NSF grants #0083898 and #0430954. Thanks also to Andrew Glassner for helpful
discussions about “magic light.”
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